九章算術卷五     晋 劉 徽 注


  唐 李淳風 注釋
  商功以御功程積實
  今有穿地積一萬尺問為堅壤各幾何答曰為堅七千五百尺為壤一萬二千五百尺
  術地穿地四為壤五
  壤謂息土
  為堅三
  堅謂築土
  為墟四
  墟謂穿坑此皆其常率
  以穿地求壤五之求堅三之皆四而一
  今有術也
  以壤求穿四之求堅三之皆五而一以堅求穿四之求壤五之皆三而一
  淳風等按此術竝今有之義也重張穿地積一萬尺為所有數堅率三壤率五各為所求率墟率四為所有率而今有之即得
  城垣隄溝壍渠皆同術
  今有穿地袤一丈六尺深一丈上廣六尺為垣積五百七十六尺問穿地下廣幾何答曰三尺五分尺之三術曰置垣積尺四之為實
  穿地四為堅三垣堅也以堅求穿地當四之三而一也
  以深袤相乘
  為深袤之立實也
  又三之為法
  以深袤乘之立實除垣積即阬廣又三之者與堅率并除之
  所得倍之
  為阬有兩廣先并而半之即為廣狹之中平今先得其中平故又倍之知兩廣全也
  減上廣餘即下廣
  按此術穿地四為堅三垣即堅也今以堅求穿地當四乘之三而一深袤相乘者為深袤立幂以深袤立幂除積即阬廣又三之為法與堅率并除所得倍之者為阬有兩廣先并而半之為中平之廣今此得中平之廣故倍之還為兩廣并故減上廣餘即下廣也
  今有城下廣四丈上廣二丈高五丈袤一百二十六丈五尺問積幾何答曰一百八十九萬七千五百尺今有垣下廣三尺上廣二尺高一丈二尺袤二十二丈五尺八寸問積幾何答曰六千七百七十四尺
  今有隄下廣二丈上廣八尺高四尺袤一十二丈七尺問積幾何答七千一百一十二尺
  冬程人功四百四十四尺問用徒幾何答曰一十六人一百一十一分人之二
  術曰并上下廣而半之
  損廣補狹
  以高若深乘之又以袤乘之即積尺
  按此術并上下廣而平之者以盈補虚得中平之廣以高若深乘之【案此下原本衍堅率三壤率五各為所求墟墟率四為所有率而今有之凡二十二字係上注重見於此今删正】得一頭之五幂又以袤乘之者得立實之積故為積尺
  以積尺為實積功尺數為法實如法而一即用徒人數【案此節之上原木有術曰二字上兩節并注原本誤入上城垣隄溝塹渠皆同術之丅今訂正合為一條】今有溝上廣一丈五尺下廣一丈深五尺袤七丈問積幾何答曰四千三百七千五尺
  春程人功七百六十六尺并出土功五分之四定功六百一十二尺五分尺之四問用徒幾何答曰七人三千六十四分人之四百二十七
  術曰置本人功去其五分之一餘為法
  去其五分之一者謂以四乘五除也
  以溝積尺為實實如法而一得用徒人數
  按此術置本人功去其五分之一者謂以四求之五而一除去出土之功取其定功乃道分内子以為法以分母乘溝積尺為實者法裏有分實裏通之故實如法而一即用徒人數此以一人之積尺除其衆尺故用徒人數不盡者等數約之而命分也
  今有壍上廣一丈六尺三寸下廣一丈深六尺三寸袤一十三丈二尺一寸問積幾何答曰一萬九百四十三尺八寸
  八寸者謂穿地方尺深八寸此積餘有方尺中二分四釐五毫棄之文欲從易非其常定也
  夏程人功八百七十一尺并出土功五分之一沙礫水石之工作太半定功二百三十二尺一十五分尺之四問用徒幾何答曰四十七人三千四百八十四分人之四百九
  術曰置本人功去其出土功五分之一又去沙礫水石之功太半餘為法以壍積尺為實實如法而一即用徒人數
  按此術置本人功去其出土功五分之一者謂以四乘五除又去沙礫水石作太半者一乘三除存其少半取其定功乃通分内子以為法以分母乘壍積尺為實者為法裏有分實裏通之故實如法而一即用徒人數不盡者等數約之而命分也
  今有穿渠上廣一丈八尺下廣三尺六寸深一丈八尺袤五萬一千八百二十四尺問積幾何答曰一十七萬四千五百八十五尺六寸
  秋程人功三百尺問用徒幾何答曰三萬三千五百八十二人功内少一十四尺四寸
  一千人先到問各當受袤幾何答曰一百五十四丈三尺二寸八十一分寸之八
  術曰以一人功尺數乘先到人數為實
  以一千人一日功為實立實為功【案此四字不可通當是衍文攷下注有立幂為法四字幂訛作實後人更移而加之于此蓋因訛致衍耳】
  并渠上下廣而半之以深乘之為法
  以渠廣深之立實為功【案此四字舛誤據廣深相乘得立幂故以除于人一日功得袤當作以渠廣深之立幂為法】實如法得袤尺
  今有方堢壔
  堢者堢城也壔音丁老反又音纛謂以土擁木也
  方一丈六尺高一丈五尺問積幾何答曰三千八百四十尺
  術曰方自乘以高乘之即積尺
  今有圓堢壔周四丈八尺高一丈一尺問積幾何答曰二千一百一十二尺
  于徽術當積二千一十七尺一百五十七分尺之一百三十一
  淳風等按依密率積二千一十六尺
  術曰周自相乘以高乘之十二而一
  此章諸術亦以周三徑一為率皆非也于徽術當以周自乘以高乘之又以二十五乘之三百一十四而一此之圓幂亦如圓田之幂也求幂亦如圓田而以高乘幂也
  淳風等按依密率以七乘之八十八而一
  今有方亭下方五丈丄方四丈高五丈問積幾何答曰一十萬一千六百六十六尺太半尺
  術曰上下方相乘又各自乘并之以高乘之三而一此章有壍堵陽馬皆合而成立方蓋說算者乃立棊三品以效高深之積假令方亭上方一尺下方三尺高一尺其用棊也中央立方一四面壍堵四四角陽馬四上下方相乘為三尺以高乘之約積三尺是為得中夾立方一四面壍堵各一上方自乘亦得中央立方一【案此十一字錯誤不可通據上方自乘所得者平幂耳非立方也又下云上方自乘以高乘之得積一尺又為中央立方一合前中央方方一四面壍堵各一及中央立方一四面壍堵各二四角陽馬各三共二十七棊則此二句乃衍文應刪去】下方自乘為九以高乘之得積九尺是為中央立方一四面壍堵各二四角陽馬各三也上方自乘以高乘之得積一尺又為中央立方一凡三品棊皆一而為三故三而一得積尺用棊之數立方三壍堵陽馬各十二凡二十七棊十三更差次之【案此句有脱誤據壍堵陽馬各十二分配立方三則一立方適得四壍堵四陽馬當云十二與三更差次之】而成方亭者三驗矣為術又可命方差自乘以高乘之三而一卽四陽馬也上下方相乘以高乘之卽中央立方及四面壍堵也并之以為方亭積數也
  今有圓亭下周三丈上周二丈高一丈問積幾何答曰五百二十七尺九分尺之七
  于微術當積五百四百七百七十一分尺之一百一十六也
  淳風等按依密率為積五百三尺三十三分尺之二十六
  術曰上下周相乘又各乘并之以高乘之三十六一而一
  此術周三徑一之義合以三除上下周各為上下徑以相乘又各自乘并以高乘之三而一為方亭之積假命三約上下周俱不盡還通之即各為上下徑令上下徑分母相乘【案此句舛誤據上云還通之卽各為上下徑則是既以分母通上下徑納分子矣此乘即各爲上下徑言之當云令上下徑相乘其語便足分母二字乃衍文應删】又各自乘并以高乘之為三方亭之積分此合分母分相乘得九為法除之【案此句有脱誤據上下徑分母同為三則上下徑相乘之數應以兩分母相乘得九報除而丄下徑各自乘之數應各以分母自乘得九報除是相乘為法及自乘為法者同用九也當云此合分母相乘得九分母各自乘亦得九為法除之不得遺去自乘一邊言之蓋後人傳寫脱落耳】又三而一得方亭之積 【此下有脱文據後委粟依垣條注云從方錐中求圓錐之積亦猶方幂求圓幂以彼例此似應有從方亭求圓亭之積八字】亦猶方幂中求圓幂乃令圓率三乘之方率四而一得圓亭之積前求方亭之積乃以三而一今求圓亭之積亦合三乘之二母既同故相準折准以方幂四乘分母九得三十六而連除之于徽術當上下周相乘又各自乘并以高乘之又二十五乘之九百四十二而一此方亭四角圓殺比于方亭二百分之一百五十七為術之意先作方亭三而一則此據上下徑為之者當又以一百五十七乘之六百而也也今據周為之若干圓堢壔又以二十五乘之三百一十四而一則先得三圓亭矣故以三百一十四為九百四十二而一併除之
  淳風等按依密率以七乘之二百六十四而一
  今有方錐下方二丈七尺高二丈九尺問積幾何答曰七千四十七尺
  術曰下方自乘以高乘之三而一
  按此術假令方錐下方二尺高一尺即四陽馬如術為之用十二陽馬成三方錐故三而一得陽馬也
  今有圓錐下周三丈五尺高五丈一尺問積幾何答曰一千七百三十五尺一十二分尺之五
  于徽術當積一千六百五十八尺三十一十四分尺之十三
  淳風等按依密率為積一千六百五十六尺八十八分尺之四十七
  術曰下周自乘以高乘之三十六而一
  按此術圓錐下周以為方錐下方方錐下方令自乘以高乘之合三而一得大錐方之積大錐方之積合十二圓矣今求一圓復合十二除之故令三乘十二得三十六而連除于徽術當下周自乘以高乘之又以二十五乘之九百四十二而一圓錐此于方錐亦二百分之一百五十七令徑自乘者亦當以一百五十七乘之六百而一其說如圓亭也
  淳風等按依密率以七乘之二百六十四而一
  今有壍堵下廣二丈袤一十八丈六尺高二丈五尺問積幾何答曰四萬六千五百尺
  術曰廣袤相乘以高乘之二而一
  斜斛立方得兩壍堵雖復橢方亦為壍堵故二而一此則合所規幂推其物體蓋為壍上疊也其形如城而無上廣與所規棊形異而同實未開所以名之為壍堵之說也
  今有陽馬廣五尺袤七尺高八尺問積幾何答曰九十三尺少半尺
  術曰廣袤相乘以高乘之三而一
  按此術陽馬之形方錐一隅也今謂四柱屋隅為陽馬假令廣袤各一尺高一尺相乘得立方積一尺斜解立方得兩壍堵斜斛壍堵其一為陽馬一為鼈臑陽馬居二鼈臑居一不易之率也合兩鼈臑成一陽馬合三陽馬而成一立方故三而一驗之以棊其形露矣悉割陽馬凡為六鼈臑觀其割分則體勢互通蓋易了也其棊或脩短或廣狹立方不等者分割分以為六鼈臑其形不悉相似然見數同積實均也鼈臑殊形陽馬異體則不純合不純合則難為之矣何則按斜解方棊以為壍堵者必當以半為分斜解壍堵以為陽馬者亦必當以半為分一從一横耳設以陽馬為分内鼈臑為分外棊雖或隨脩短廣狹猶有此分常率知殊形異體亦同也者以此而已其使鼈臑廣袤高各二尺【案原本訛作廣袤各高二尺今改正】用壍堵鼈臑之棊各二皆用赤棊又使陽馬之廣袤高各二尺用立方之棊一壍堵陽馬之棊各二皆用黑棊棊之赤黑接為壍堵廣袤高各二尺于是中效其廣又中分其高令赤黑壍堵各自適當一方高二尺方二尺每二分鼈臑則一陽馬也其餘兩端各積本體合成一方焉是為别種而方者率居二通其體而方者率居一雖方隨棊改而固有常然之勢也按餘數具而可知者有一二分之别則一二之為率定矣其于理也豈虚矣若為數而窮之置餘廣袤高之數各半之則四分之三又可知也半之彌少其餘彌細至細曰微微則無形由是言之安取餘哉數而求窮之者謂以情推不用籌算鼈臑之物不同器用陽馬之形或隨脩短席狹然不有鼈臑無以審陽馬之數不有陽馬無以知錐亭之數功寔之主也
  今有鼈臑下廣五尺無袤上袤四尺無廣高七尺問積幾何答曰二十三尺少半尺
  術曰廣袤相乘以高乘之六而一
  按此術臑者背節也或曰半陽馬其形有似鼈肘故以名云中破陽馬得兩鼈臑鼈臑之見數卽陽馬之半數數同而寔據半故云六而一即得
  今有羨除下廣六尺土廣一丈深三尺末廣八及無深袤七尺問積幾何答曰八十四尺
  術曰并三廣以深乘之又以袤乘之六而一
  按此術羨除寔隧道也其所穿地上半下斜似兩鼈臑夾一壍堵即羨除之形假令用此棊上廣三尺深一尺下廣一尺末廣一尺無深袤一尺下廣即壍堵上廣者兩鼈臑與一壍堵相連之廣也以深袤乘得積五尺鼈臑居二壍堵居三其于本棊皆一為六故六而一合四陽馬以為方錐斜畫方錐之底亦令為中方就中方削而上合全為中方錐之半于是陽馬之棊悉中解矣中錐離而為四鼈臑焉故外錐之半亦為四鼈臑雖背正異形與常所謂鼈臑参不相似寔則同也所云夾壍堵者中錐之鼈臑也凡壍堵上袤短者連陽馬也下袤短者與鼈臑連也下兩袤相等知亦與鼈臑連也并三廣以高袤乘六而一皆其積也今此羨除之廣即壍堵之袤也按此本是三廣不等即與鼈臑連者别而言之中央壍堵廣六尺高三尺袤七尺末廣之兩旁各一小鼈臑皆與壍堵等令小鼈臑居裏大鼈臑居表則大鼈臑出撱皆方錐下廣三尺袤六尺高七尺分取其半則為袤三尺以高廣乘之三而一即半錐之積也斜解半錐得此兩大鼈臑求其積亦當六而一合于常率矣按陽馬之棊兩斜棊底方當其方也不問旁角而割之相半可知也推此上連無成不方故方錐與陽馬同寶角而割之者相半之勢此大小鼈臑可知更相表裏但體有背正也
  今有芻甍下廣三丈袤四丈上袤二丈無廣高一丈問積幾何答曰五十尺
  術曰倍下袤上袤從之以廣乘之又以高乘之六而一推明義理者舊說云凡積芻甍有上下廣曰童甍謂其屋蓋之苫也是故甍之下廣袤與童之上廣袤等正解方亭兩邊合之即芻甍之形也假令下廣二尺袤三尺上袤一尺無廣高一尺其用棊也中央壍堵二兩端陽馬各二倍下袤上袤從之為七尺以高廣乘之得幂十四尺陽馬之幂各居一壍堵之幂各居三以高乘之得積十四尺其于本棊也皆一而為六故六而一即得亦可令上下袤差乘廣以高乘之三而一即四陽馬也下廣乘上袤而半之高乘之即二壍堵并之以為甍積也
  芻童曲池盤池冥谷皆同術
  術曰倍上袤下袤從之亦倍下袤一袤從之各以其廣乘之并以高若深乘之皆六而一
  按此術假令芻童上廣一尺袤二尺下廣三尺袤四尺高一尺其用棊也中央立方二四面壍堵六四角陽馬四倍下袤為八上袤從之為十以高廣乘之得積三十尺是為得中央立方各三兩邊壍堵各四兩旁壍堵各六四角陽馬亦各六復倍上袤下袤從之為八以高廣乘之得積八尺是為得中央立方亦各三兩端壍堵各二并兩旁三品棊皆一而為六故六而一即得為術又可令上下廣袤差相乘以高乘之三而一亦四陽馬上下廣袤互相乘并而半之以高乘之即四而六壍堵與二立方并之為芻童積又可令上下廣袤互相乘而半之上下廣袤又各自乘并以高乘之三而一即得也
  其曲池者并上中外周而半之以為上袤亦并下中外周而半之以為下袤
  此池環而不通帀形如盤蛇而曲之亦云周者謂如委穀依垣之周耳引而伸之周為袤求袤之意環田也
  今有芻童下廣二丈袤三丈上廣三丈袤四丈高三丈積幾何答曰一萬六千五百尺
  今有曲池上中周二丈外周四丈廣一丈下中周一丈四尺外周二丈四尺廣五尺深一丈問積幾何答曰一千八百八十三尺三寸少半寸
  今有盤池上廣六丈袤八丈下廣四丈袤六丈深二丈問積幾何答曰七萬六百六十六尺太半尺
  負土往來七十步其二十步上下棚除棚除二當平道五踟蹰之間十加一載輸之間三十步定一返一百四十步土籠積一尺六寸秋程人功行五十九里半問人到積尺及用徒各幾何答曰人到二百四尺用徒三百四十六人一百五十三分人之六十二
  術曰以一籠積尺乘程行步數為實往來上下棚除二當平道五
  棚閣除斜道有上下之難故使二當五也
  置定往來步數十加一及載輸之間三十步以為法除之所得即一人所到尺以所到約積尺即用徒尺數按此術棚閣除斜道有上下之難故使二當五置定往來步數十加一及載輸之間三十步是為往來求一返凡用一百四十步于今有術為所有行率籠積一尺六寸為所求到土率程行五十九里半為所有數而今有之即所到尺數所到約積尺即用徒人數者此一人之積除其衆積尺故得用徒人數為術又可令往乘一返所用之步約程行為返數乘籠積為一人所到以此術與今有術相反覆則乘除之或先後意各有所在而同歸耳
  今有冥谷上廣二丈袤七丈下廣八尺袤四丈深六丈五尺問積幾何答曰五萬二千尺
  載土往來二百步載輸之間一里程行五十八步六人共車車載三十四尺七寸間人到積尺及用徒各幾何答曰人到二百一尺五十分尺之十三用徒二百五十八人一萬六十三分人之三千七百四十六
  術曰以一車積尺乘程行步數為實置今往來步數加載輸之間一里以車六人乘之為法除之所得即一人所到尺以所到約積尺即用徒人數
  按此術今有之義以載輸及往來并得五百步為所有行率車載三十四尺七寸為所求到土率程行五十八里通之為步為所有數而今有之所得即一車所到欲得人到者當以六人除之即得術有分故亦更令法而并除者亦用以半尺數以為一人到土率【案此二十五字訛舛不可通據下文云術恐有分故令乘法而并除又云亦可令六人約半積尺數為一人到土率此即下殘缺字句之誤入于前者應删去以免重複】六人乘五百步為行率也又亦可五百步為行率令六人約半積尺數【此句舛誤當云約車載尺數】為一人到上率以載土術入之入之者亦可求返數也要其會通而矣【案此二十一字訛舛不可通據下云術恐有分故令乘法而并除總承上六人除一車所到及交約車載尺數二術也中間衍前二十五字及此此十一字蓋由傳寫失真後人復妄意竄改耳】術恐有分故令乘法而并除以所到為積尺即用徒人數者以一人所積尺除其衆積故得用徒人數也
  今有幾粟平地下周一十二丈高二丈問積及為粟幾何答曰積八千尺
  于徽術當積七千六百四十三尺一百五十七分尺之四十九
  淳風等按依密率為積七千六百三十六尺十一分尺之四
  為粟二千九百六十二斛二十七分斛之二十六于徽術當粟二千八百三十斛一千四百一十三分斛之一千二百一十
  淳風等按依密率為粟二千八百二十八斛九十九分斛之二十八
  今有委米依垣内角下周八尺高五尺問積及為米幾何答曰積三十五尺九分尺之五
  于徽術當積三十三尺四百七十一分尺之四百五十七
  淳風等按依密率當積三十三尺三十三分尺之三十一
  為米二十一斛七百二十九分斛之六百九十一于徽術當米二十斛三萬八千一百五十一分斛之三萬六千九百八十
  淳風等按依密率為米二十斛二千六百七十三分斛之二千五百四十
  今有委菽依垣下周三大高七尺問積及為菽各幾何答曰積三百五十尺
  依徽術當積三百三十四尺四百七十一分尺之一百八十六
  淳風等按依密率為積三百三十四尺十一分尺之一
  為菽一百四十四斛二百四十三分斛之八
  依徽術當菽一百三十七斛一萬二于七百一十七分斛之七千七百七十一
  淳風等按依密率為菽一百三十七斛八百九十一分斛之四百三十三
  術曰下周自乘以高乘之三十六而一
  此猶圖錐也于徽術亦當下周自乘以高乘之又以二十五乘之九百四十二而一也
  其依垣者
  居圖錐之半也
  十八而一
  于徽術當令此下周自乘以高乘之又以二十五乘之四百七十一而一依垣之周半于全周其自乘之幂居全周自乘之幂四分之一故半全周之法以為法也
  其依垣内角者
  角隅也居圓錐四分之一也
  九而一
  于徽術當令此下周自乘而倍之以高乘之又以二十五乘之四百七十一而一依隅之周半于依垣其自乘之幂居依垣自乘之幂四分之一當半依垣之法以為法法不可半故倍其實又此術亦用周三徑一之率假令以三除周得徑若不盡通分内子即為徑之積令自乘以高乘之為三方錐之積分母自相乘得九為法又當三而一約方錐之積從方錐中求圓錐之積亦猶方幂求圓幂乃當二乘之四而一方錐得圓幂之積 【此句衍方錐二字又圓幂當作圓錐】前乘方積乃以三而一今求圓錐之積復合三乘之二母既同故相凖折惟以四乘分母九得三十六而運除圓錐之積其圓錐之積與平地聚粟同故三十六而一
  淳風等按依密率以七乘之其平地者二百六十四而一依垣者一百三十二而一依隅者六千六而一也
  程粟一斛積二尺七寸
  二尺七寸者謂方一尺深二尺七寸凡積二千七百寸
  其米一斛積一尺六寸五分寸之一
  謂一千六百二十寸
  其菽荅麻麥一斛皆二尺四寸十分寸之三
  謂積二千四百三十寸此為以精粗為率而不等其㮣也粟率五米率二故米一斛于粟一斛五分之三菽答麻麥亦如本率云故謂此三一器為㮣而皆不合于今斛當今大司農斛圓徑一尺三寸五分五釐正深一尺于徽術為積一十四百四十一寸排成餘分又有十分寸之三王莽銅斛于今尺為深九寸五分五釐徑一尺三寸六分八釐二毫以徽術計之于余斛為容九斗七升四合有奇周官考工記桌氏為量深二尺内方一尺而圓外其實一鬴于徽術此圓周積一千五百七十六寸左氏傳曰齊舊四量且區釡鍾四升曰豆各自其四以登于釡大十則鍾鍾六斛四斗釡六斗四升方一尺深一尺其積一千寸若此方積容四斗二升則通外圓積成旁客十斗四合一龠五分之三也以數相乘之則斛之制方一尺而圓其外庣旁一釐七毫幂一百五十六寸四分寸之一深一尺積一千五百六十二寸半容十斗王莽銅斛與漢書律歷志所論斛同
  今有倉廣三丈袤四丈五尺容粟一萬斛問高幾何答曰二丈
  術曰置粟一萬斛積尺為寶廣袤相乘為法寶如法而一得高
  以廣袤之幂除積故得高按此術本以廣袤相乘以高乘之得此積今還元置此廣袤相乘為法除之故得高也
  今有圓囷
  圓囷廪也亦云圓囷也
  高一丈三尺三寸少半寸容米一十斛問周幾何荅曰五丈四尺
  于徽術當周五丈五尺二寸二十分寸之九
  淳風等按依密率為用五丈五尺一百分尺之二十七
  術曰置米積尺
  此積猶圓堢壔之積
  以十二乘之令高而一所得開方除之即周
  于徽術當置米積尺以三百一十四米之為實二十五乘囷為為法所得開方除之即周也一亦披見幂以求周失之千微少也晉武庫中有漢時王莽所作銅斛其篆書字題斛旁云律嘉量斛方一尺而圓其升庣旁九釐五毫幂一百六十二寸而一尺積一千六百二十寸容十斗及斛底云律嘉量斗方尺而圓其外庣旁九釐五毫幂一百六十二寸【案原本紀作幂一尺六寸二分于數不合當是後人因下文積一百六十二寸與此適圓妄改此以别于下不知幂一百六十二寸者平方寸也其深僅一才故積仍為一百六十二寸積乃立方才與幂自别沉斗與斛之方圖庣旁既同則幂亦同斛深十倍于斗故積十倍之今據上下文訂正】深一寸【案原本訛作深一尺今改正】積一百六十二寸容一斗合龠皆有文字升居斛旁合龠在斛耳上後有讚文與今律歷志同亦魏晋所常用今粗疏王莽銅斛文字尺寸分數然不盡得升合寸之文字按此術本周自相乘以高乘之十二而一得此積今還元置此積以十二乘之令高而一即復本周自乘之數凡一自乘開方除之復其本周自乘之數故開方除之即得也
  淳風等按依密率以八十八乘之為實七乘囷高為法實如法而一開方除之即周也

  九章算術卷五